中信博单轴跟踪 格瑞士光伏支架


在此处观看有关Greentech Media的网络研讨会。要直接下载网络研讨会幻灯片,请点击这里:NEXTracker:与同行一起,推动太阳能跟踪器风能测试标准的制定 涵盖的主题: 了解同行评审过程在提供独立的风洞测试…


在此处观看有关Greentech Media的网络研讨会。要直接下载网络研讨会幻灯片,请点击这里:NEXTracker:与同行一起,推动太阳能跟踪器风能测试标准的制定


  • 了解同行评审过程在提供独立的风洞测试方法和结果验证方面的重要性
  • David Banks博士和Girma Bitsuamlak博士关于正确的空气弹性风洞测试方法的验证结论
  • 检查影响跟踪器结构的主要空气弹性效应
  • 强大的2-in-portrait追踪器设计的风风险缓解因素






如果风在设计风速范围内,则设计正确的跟踪器每年应遭受零风害。NEXTracker的NX Horizo​​n Gen 2的运行中/正在建设中的GW超过23 GW,在数百个站点中没有发生重大故障或损坏。NX Horizo​​n和NX Gemini都是使用相同的风电工程最佳实践开发的,特别是气动弹性风洞测试,同时充分考虑了所有潜在的动态影响,包括扭转发散,扭转驰豫,颤动和涡旋锁定。




[博士 银行]问:长时间进行的PV站点测得的风速能否代替规范中的风速要求?


[博士 银行/博士 问:低倾角和高倾角之间的边界是什么?


[博士 银行]问:如何在有限的风洞宽度中充分测试长组件?


[博士 [Bitsuamlak]问:对于气动弹性仿真,您是否将材料视为纯弹性?也就是说,您是在假设变形较小但允许较大的旋转位移,还是在考虑变形的可能性?柯西或绿色菌株?





Watch the webinar on Greentech Media here. To download the webinar slides directly, please click here.

For those who submitted questions during the webinar, thank you. We’ve compiled your questions and answered them below.

Topics Covered:

  • Understanding the importance of the peer review process in providing independent verification of wind tunnel testing methods and results
  • Validated conclusions from Dr. David Banks and Dr. Girma Bitsuamlak around proper aeroelastic wind tunnel testing methodology
  • Examination of major aeroelastic effects that impact tracker structures
  • Wind risk mitigation factors for robust 2-in-portrait tracker design

[NEXTracker] Q: How often would you estimate that the code-required peer review is ignored by jurisdictions?

The code does not specifically address single-axis trackers (SATs), and the code for sloped roofs and bridge decks should not be applied to SATs for the reasons outlined in the webinar. Wind tunnel testing is required to address structures not covered by code. It is our recommendation as a best practice that IEs and AHJs look for wind tunnel analysis from a reputable wind engineering firm, plus a third-party peer review to remove bias. Not following this diligence step can lead to wide variations in results for similar structures, and risk of under-calculating wind loads.

[NEXTracker] Q: How are dynamic loading factors/coefficients taken into account in the design loading of a solar array? Can you provide an example of how this load determination is conducted?

In its simplest form, dynamic amplification factors (DAF) need to be incorporated along with static coefficients to the structural calculations of the tracker structure and components. Furthermore, since the tracker can twist along its length, different coefficients and factors need to be applied along the span to ensure design compliance. Lastly, trackers will undergo some torsional deflection, no matter what, due to the fluctuating nature of the wind that will result in additional torque demand. This is estimated from the accelerations measured during an aeroelastic wind tunnel test and should be added on to the static load demand.

[NEXTracker] Q: What is a ballpark cost per watt for wind damage annually for the average worst- and best-case scenarios?

Properly designed trackers should experience zero damage from wind annually, providing the wind is within design wind speed conditions. NEXTracker’sNX Horizon Gen 2, with over 23 GW operating / under construction, has had no significant failures or damage over hundreds of sites. Both NX Horizon and NX Gemini were developed using the same wind engineering best-practices, specifically aeroelastic wind tunnel testing with thorough consideration of all potential dynamic effects, including torsional divergence, torsional galloping, flutter and vortex lock-in.

For trackers that do not take dynamic wind and other factors into consideration, failures can range widely in costs.

[NEXTracker] Q: What are the increased risks for installing modules during the construction phase prior to the installation of damping components?

It is recommended to install dampers first since modules are the driving force of wind loads on a tracker structure. Best practices suggest that they be placed only after all components have been installed. Dampers stiffen the structure and will help prevent failures even at low wind speeds. In addition, as the plant will not be commissioned, alternate stow practices should be followed prior to the plant becoming operational.

[Dr. Banks] Q: Can measured wind speeds at a PV site, performed over a long period of time, replace the wind speed requirements in the codes?

Generally, no, because so many years of data are needed to determine a 50 or 300-year design speed. However, measurements from a site can be used to determine if there is anything unusual about winds at the site that might not appear in local airport data, such as katabatic (downslope) winds.

[Dr. Banks/Dr. Bitsuamlak] Q: What is the border between a low and high tilt angle?

The aerodynamic forces acting on a solar panel are dictated by attached and separated flow structures and the associated pressure around it, at low and high tilt angles respectively. The boundary between these regimes is defined by stall angle, which can be obtained from wind tunnel measurements of the aerodynamic torque versus wind angle of incidence.  For the low tilt angle range, the aerodynamic torque increases with the angle of wind incidence. The specific value for the boundary (i.e. stall angle) depends on the geometric details of the tracker.

[Dr. Banks] Q: How can long assemblies be adequately tested in the limited width of wind tunnels?

If the assembly span is too great, a wider tunnel may be needed because the trackers cannot be made too small, or important details will be missed, and/or similarity parameters (such as mass moment of inertia) can become impossible to match.

[Dr. Bitsuamlak] Q: For the aeroelastic simulation, do you treat the material as purely elastic? That is, are you making a small-deformation assumption but allowing for large rotational displacements or are you accounting for the possibility of large deformation? Cauchy or Green strain?

For aeroelastic simulations, the stiffness of the structure is estimated assuming linear elastic behavior of materials. The nonlinearly is predominantly coming from aerodynamic hysteresis.


作者: 小编

联系我们: 邮箱 电话:13164959840






在线咨询: QQ交谈